Hi,你好,欢迎来到智慧城市网
  • 厂家直供
  • 大宗采购
  • 实力企业
  • 资讯头条
  • 招商
  • 卓越品牌
 
当前位置: 首页 » 资讯头条 » 智慧应用 » 应用资讯 » 正文

大数据智能分析:外滩踩踏事故背后

放大字体  缩小字体 发布日期:2015-01-23  来源:36大数据  浏览次数:5927
我们进一步对图5中外滩区域的人流进行量化分析,得到了图6所示的人群流动方向分布图。图6中每一扇形分区代表不同的人流方向,扇区半径表示该方向人流量大小。图6(1-2)分别表示中秋和国庆当晚的情况,可以看出,人流方向比较简单和清晰,即南北向人流较多,其他方向人流较少。图6(3)显示了跨年当晚的外滩区域的人流方向。除了南北双向的人流,还有其他多个方向人流,人群流动方向分布混乱。

针对产生复杂人群流动方向的原因,有专家这样推测,中秋节、国庆节游客只是单纯的外滩游览;而在跨年当晚,很多游客是为了去观看灯光秀,但是到了陈毅广场后才发现灯光秀地点更改(往年都在陈毅广场,今年更改为外滩源)。从百度搜索关键词分析里面也看到这一趋势。当晚23:20左右,搜索“灯光秀取消了么”和“灯光秀门票”的关键词的数量急剧增加(图7)。



图7 搜索“灯光秀取消了么”和“灯光秀门票”的关键词指数

从手机地图使用习惯来看,游客去目的地前,一般都会提前利用地图搜索目的地和规划路线,灯光秀地点在外滩源,那么用户应该会搜索“外滩源”并规划路径。我们研究了当晚游客到底在什么位置通过百度地图搜索“外滩源”,发现大部分都集中在外滩附近(图8中红色区域),这从某种程度上就说明用户原本不知道灯光秀更改为外滩源,到了外滩以后才发现改了地方,所以才掏出手机进行地图搜索。



图8 以“外滩源”为目标的地图搜索发起点热力图

三、群体聚集是突发情况,可以预警吗?


我国人口众多,重大文体活动、节假日集会等活动中,容易出现因人群过度拥挤而引发的危险乃至事故。那么是否可以提前预测,做到事前预警呢?大数据实验室对百度的定位数据、搜索数据进行了深度挖掘,探索预警的可能性。



图9 外滩地图搜索与人群汇聚情况趋势图

图9代表2014年12月25日至31日,外滩地图搜索请求与人群汇聚情况的历史趋势。从两条曲线经过标准化和对齐后的走势中,我们不难看出他们基本一致的涨落趋势。平时,外滩的地图搜索和人群汇聚程度基本稳定,但在2014年的最后一天,两者都达到了最高峰。



图10 外滩地图搜索请求与人员到达数量相关性分析

通过对百度的定位数据、搜索数据进行挖掘。进一步对2014年12月31日的地图搜索请求与人员到达数量进行相关性分析。由图10得到,在百度地图中,相关地点的请求数据和实际到达该地点人群数量具有极高的相关性,相关系数超过0.9(越接近1,说明越相关)。这表明,用户去目的地前,一般都会提前利用百度地图搜索地点和规划路线。为了挖掘用户的时间提前量,包括外滩跨年时的数据,大数据实验室又对大量历史群体聚集场合的数据进行进一步的分析,包括鸟巢足球赛等。



图11 外滩地图搜索与人群数量的互相关性曲线

通过对大量历史数据分析发现,相关地点的地图搜索请求峰值会早于人群密度高峰几十分钟出现(可参见图9)。在图11中我们给出了搜索量和人群数量之间的互相关性相对于时延的变化曲线,其中X轴的值为时延量,负值即表示提前量,例如-10对上去曲线的值,就是提前10小时的搜索量与人群数量的相关性。图中可以发现,两个量的互相关性曲线在-1.5小时的时候达到了峰值,这意味着,根据地图上相关地点搜索的请求量,我们至少可能提前几十分钟预测出人流量峰值的到来。

 
 
[ 资讯头条搜索 ]  [ 加入收藏 ]  [ 告诉好友 ]  [ 打印本文 ]  [ 违规举报 ]  [ 关闭窗口 ]

 

 
推荐图文
推荐资讯头条
点击排行
经营许可证编号 京ICP备11011863号-2 京公网安备 110105019046 号 | 京公网安备 110105019046号
返回顶部